skip to main content


Search for: All records

Creators/Authors contains: "Gilli, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aims. We study the ensemble X-ray variability properties of active galactic nuclei (AGN) over large ranges of timescale (20 ks ≤  T  ≤ 14 yr), redshift (0 ≤  z  ≲ 3), luminosity (10 40  erg s −1  ≤  L X  ≤ 10 46  erg s −1 ), and black hole (BH) mass (10 6  ≤  M ⊙  ≤ 10 9 ). Methods. We propose the use of the variance-frequency diagram as a viable alternative to the study of the power spectral density (PSD), which is not yet accessible for distant, faint, and/or sparsely sampled AGN. Results. We show that the data collected from archival observations and previous literature studies are fully consistent with a universal PSD form, which does not show any evidence for systematic evolution of shape or amplitude with redshift or luminosity, even if there may be differences between individual AGN at a given redshift or luminosity. We find new evidence that the PSD bend frequency depends on BH mass and possibly on accretion rate. We finally discuss the implications for current and future AGN population and cosmological studies. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. ABSTRACT

    We introduce a new set of zoom-in cosmological simulations with sub-pc resolution, intended to model extremely faint, highly magnified star-forming stellar clumps, detected at z = 6.14 thanks to gravitational lensing. The simulations include feedback from individual massive stars (in both the pre-supernova and supernova phases), generated via stochastic, direct sampling of the stellar initial mass function. We adopt a modified ‘delayed cooling’ feedback scheme, specifically created to prevent artificial radiative loss of the energy injected by individual stars in very dense gas (n ∼ 103–105 cm−3). The sites where star formation ignites are characterized by maximum densities of the order of 105 cm−3 and gravitational pressures Pgrav/k >107 K cm−3, corresponding to the values of the local, turbulent regions where the densest stellar aggregates form. The total stellar mass at z = 6.14 is 3.4$\times 10^7~\rm M_{\odot }$, in satisfactory agreement with the observed stellar mass of the observed systems. The most massive clumps have masses of $\sim 10^6~\rm M_{\odot }$ and half-mass sizes of ∼100 pc. These sizes are larger than the observed ones, including also other samples of lensed high-redshift clumps, and imply an average density one orders of magnitude lower than the observed one. In the size–mass plane, our clumps populate a sequence that is intermediate between the ones of observed high-redshift clumps and local dSph galaxies.

     
    more » « less
  3. ABSTRACT We discovered a strongly lensed (μ ≳ 40) Ly α emission at z = 6.629 (S/N ≃ 18) in the MUSE Deep Lensed Field (MDLF) targeting the Hubble Frontier Field (HFF) galaxy cluster MACS J0416. Dedicated lensing simulations imply that the Ly α emitting region necessarily crosses the caustic. The arc-like shape of the Ly α extends 3 arcsec on the observed plane and is the result of two merged multiple images, each one with a de-lensed Ly α luminosity L ≲ 2.8 × 1040 erg s−1 arising from a confined region (≲150 pc effective radius). A spatially unresolved Hubble Space Telescope(HST) counterpart is barely detected at S/N ≃ 2 after stacking the near-infrared bands, corresponding to an observed (intrinsic) magnitude m1500 ≳ 30.8 (≳35.0). The inferred rest-frame Ly α equivalent width is EW0 > 1120 if the IGM transmission is TIGM < 0.5. The low luminosities and the extremely large Ly α EW0 match the case of a Population III (Pop III) star complex made of several dozens stars (∼104 M⊙) that irradiate an H ii region crossing the caustic. While the Ly α and stellar continuum are among the faintest ever observed at this redshift, the continuum and the Ly α emissions could be affected by differential magnification, possibly biasing the EW0 estimate. The aforementioned tentative HST detection tends to favour a large EW0, making such a faint Pop III candidate a key target for the James Webb Space Telescope and Extremely Large Telescopes. 
    more » « less